Servo Motor Selection Flow Chart

Explanation	References
•Calculate Regenerative Energy from the Torque of all the moving parts.	•Please see the user manual of each product for the details on calculation of the regenerative energy.
-Check if the the number of encoder pulses meets the system specified resolution.	•Accuracy of Positioning
-Check if the calculation meets the specifications of the temporarily selected motor. If not, change the temporarily selected motor and re-calculate it.	•The following table

Specialized Check Items	Check Items
Load Inertia	Load Inertia \leq Motor Rotor Inertia x Applicable Inertia Ratio
Effective Torque	Effective Torque < Motor Rated Torque - Please allow a margin of about 20\%. *
Maximum Momentary Torque	Maximum Momentary Torque < Motor Maximum Momentary Torque - Please allow a margin of about 20%. * - For the motor Maximum Momentary Torque, use the value that is combined with a driver and the one of the motor itself.
Maximum Rotation Speed	Maximum Rotation Speed \leq Rated Rotation Speed of a motor - Try to get as close to the motor's rated rotations as possible. It will increase the operating efficiency of a motor. - For the formula, please see "Straight-line Speed and Motor Rotation Speed" on Page 11.
Regenerative Energy	Regenerative Energy \leq Regenerative Energy Absorption of a motor -When the Regenerative Energy is large, connect a Regenerative Energy Absorption Resistance to increase the Absorption capacity of the driver.
Encoder Resolution	Ensure that the Encoder Resolution meets the system specifications.
Characteristics of a Positioner	Check if the Pulse Frequency does not exceed the Maximum Response Frequency or Maximum Command Frequency of a Positioner.
Operating Conditions	Ensure that values of the ambient operating temperature/ humidity, operating atmosphere, shock and vibrations meet the product specifications.

* When handling vertical loads and a load affected by the external torque, allow for about 30\% of capacity.

Formulas

■Formulas for Operating Patterns
Sriangular
Speed and Slope

■Inertia Formulas

Cylindrical Inertia		$J_{w}=\frac{M\left(D_{1}^{2}+D_{2}^{2}\right)}{8} \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Eccentric Disc Inertia (Cylinder which rotates off the center axis)		$J_{w}=J_{C}+M \cdot r \mathrm{e}^{2} \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Inertia of Rotating Square Cylinder	M: Square Cylinder Mass (kg)	$J_{w}=\frac{M\left(a^{2}+b^{2}\right)}{12} \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Inertia of Linear Movement		$\mathrm{J}_{\mathrm{w}}=\mathrm{M}\left(\frac{\mathrm{P}}{2 \pi}\right)^{2} \times 10^{-6}+\mathrm{J}_{\mathrm{B}}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Inertia of Lifting Object by Pulley	D: Diameter (mm) M_{1} : Mass of Cylinder (kg) J_{1} : Cylinder Inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ J_{2} : Inertia due to the Object $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ M_{2} : Mass of Object (kg) J_{w} : Inertia (kg•m²)	$\begin{aligned} J_{w} & =J_{1}+J_{2} \\ & =\left(\frac{M_{1} \cdot D^{2}}{8}+\frac{M_{2} \cdot D^{2}}{4}\right) \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \end{aligned}$

Inertia of Rack and Pinion Movement		$J_{w}=\frac{M \cdot D^{2}}{4} \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Inertia of Suspended Counterbalance		$J_{W}=\frac{D^{2}\left(M_{1}+M_{2}\right)}{4} \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Inertia when Carrying Object via Conveyor Belt		$\begin{aligned} & J_{W}= J_{1}+J_{2}+J_{3}+J_{4} \\ &=\left(\frac{M_{1} \cdot D_{1}^{2}}{8}+\frac{M_{2} \cdot D_{2}^{2}}{8} \cdot \frac{D_{1}^{2}}{D_{2}^{2}}+\right. \\ &\left.\frac{M_{3} \cdot D_{1}^{2}}{4}+\frac{M_{4} \cdot D_{1}^{2}}{4}\right) \times 10^{-6} \\ &\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \end{aligned}$
Inertia where Work is Placed between Rollers	J_{w} : System Inertia (kg•m²) J_{1} : Roller 1 Inertia ($\mathrm{kg} \cdot \mathrm{m}^{2}$) J_{2} : Roller 2 Inertia (kg•m²) D_{1} : Roller 1 Diameter (mm) D_{2} : Roller 2 Diameter (mm) M : Equivalent Mass of Work (kg)	$J_{W}=J_{1}+\left(\frac{D_{1}}{D_{2}}\right)^{2} J_{2}+\frac{M \cdot D_{1}{ }^{2}}{4} \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Inertia of a Load Value Converted to Motor Shaft		$J_{L}=J_{1}+\mathrm{G}^{2}\left(\mathrm{~J}_{2}+J_{\mathrm{W}}\right)\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$

■Load Torque Formulas

Torque against external force		$\mathrm{T}_{\mathrm{W}}=\frac{\mathrm{F} \cdot \mathrm{P}}{2 \pi} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Torque against frictional force	M: Load Mass (kg)	$\mathrm{T}_{\mathrm{w}}=\mu \mathrm{Mg} \cdot \frac{\mathrm{P}}{2 \pi} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Torque when external force is applied to a rotating object	D: Diameter (mm) F: External Force (N)	$\mathrm{T}_{\mathrm{w}}=\mathrm{F} \cdot \frac{\mathrm{D}}{2} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Torque of an object on the conveyer belt to which the external force is applied	D: Diameter (mm)	$\mathrm{T}_{\mathrm{W}}=\mathrm{F} \cdot \frac{\mathrm{D}}{2} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Torque of an object to which the external force is applied by Rack and Pinion		$\mathrm{T}_{\mathrm{W}}=\mathrm{F} \cdot \frac{\mathrm{D}}{2} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Torque when work is lifted at an angle.		$\mathrm{T}_{\mathrm{W}}=\mathrm{Mg} \cdot \cos \theta \cdot \frac{\mathrm{D}}{2} \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Torque of a Load Value Converted to Motor Shaft		$\mathrm{T}_{\mathrm{L}}=\mathrm{T}_{\mathrm{w}} \cdot \frac{\mathrm{G}}{\eta}(\mathrm{~N} \cdot \mathrm{~m})$

■Acceleration/Deceleration Torque Formula

■Calculation of Maximum Momentary Torque, Effective Torque

■Positioning Accuracy
P: Ball Screw Pitch

©Straight Line Speed and Motor Rotation Speed

Sample Calculations

(1)Machinery Selection

- Load Mass M = 5 (kg)
- Ball Screw Pitch $P=10$ (mm)
- Ball Screw Diameter D = 20 (mm)
- Ball Screw Mass $\mathrm{Mb}=3$ (kg)
- Ball Screw Friction Coefficient $\mu=0.1$
- Since there is no decelerator, $G=1, \eta=1$

(2)Determining Operating Pattern

(3)Calculation of Motor Shaft Conversion Load Inertia

Ball screw Inertia J_{B}	$J_{B}=\frac{M_{B} D^{2}}{8} \times 10^{-6}$	$J_{B}=\frac{3 \times 20^{2}}{8} \times 10^{-6}=1.5 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Load Inertia J_{w}	$J_{W}=M\left(\frac{P}{2 \pi}\right)^{2} \times 10^{-6}+J_{B}$	$J_{W}=5 \times\left(\frac{10}{2 \times 3.14}\right)^{2} \times 10^{-6}+1.5 \times 10^{-4}=1.63 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
Motor Shaft Conversion Load Inertia J_{L}	$J_{L}=G^{2} \times\left(J_{W}+J_{2}\right)+J_{1}$	$J_{L}=J_{W}=1.63 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

(4)Load Torque Calculation

Torque against Friction Torque T_{w}	$\mathrm{T}_{\mathrm{w}}=\mu \mathrm{Mg} \frac{\mathrm{P}}{2 \pi} \times 10^{-3}$	$\mathrm{~T}_{\mathrm{W}}=0.1 \times 5 \times 9.8 \times \frac{10}{2 \times 3.14} \times 10^{-3}=7.8 \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$
Motor Shaft Conversion Load Torque T_{L}	$\mathrm{T}_{\mathrm{L}}=\frac{\mathrm{G}}{\mathrm{n}} \cdot \mathrm{T}_{\mathrm{W}}$	$\mathrm{T}_{\mathrm{L}}=\mathrm{T}_{\mathrm{W}}=7.8 \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$

(5)Calculation of Rotation Speed

Rotations \mathbf{N}	$\mathrm{N}=\frac{60 \mathrm{~V}}{\mathrm{P} \cdot \mathrm{G}}$	$\mathrm{N}=\frac{60 \times 300}{10 \times 1}=1800(\mathrm{r} / \mathrm{min})$

(6)Motor Temporary Selection [In case OMNUC U Series Servo Motor is temporarily selected]

The Rotor/Inertia of the selected servo motor is more than $1 / 30^{*}$ of a load	$\mathrm{JM} \geq \frac{\mathrm{J}_{\mathrm{L}}}{30}$	$\frac{\mathrm{J}_{\mathrm{L}}}{30}=\frac{1.63 \times 10^{-4}}{30}=5.43 \times 10^{-6}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ Temporarily selected Model R88M $-\mathrm{U} 20030\left(\mathrm{~J}_{\mathrm{M}}=1.23 \times 10^{-5}\right)$.
80% of the Rated Torque of the selected servo motor is more than the load torque of the servomotor shaft conversion value	$\mathrm{T}_{\mathrm{M}} \times 0.8>\mathrm{T}_{\mathrm{L}}$	Rated Torque for R88M -U 20030 Model from TM $=0.637(\mathrm{~N} \cdot \mathrm{~m})$ $T_{M}=0.637(\mathrm{~N} \cdot \mathrm{~m}) \times 0.8>\mathrm{T}_{\mathrm{L}}=7.8 \times 10^{-3}(\mathrm{~N} \cdot \mathrm{~m})$

[^0]
(7)Calculation of Acceleration/Deceleration Torque

Acceleration/ Deceleration Torque T_{A}	$T_{A}=\frac{2 \pi \cdot N}{60 t_{A}}\left(J_{M}+\frac{J_{L}}{\eta}\right)$	$T_{A}=\frac{2 \pi \times 1800}{60 \times 0.2} \times\left(1.23 \times 10^{-5}+\frac{1.63 \times 10^{-4}}{1.0}\right)=0.165(\mathrm{~N} \cdot \mathrm{~m})$

(8)Calculation of Maximum Momentary Torque, Effective Torque

Required Max. Momentary Torque is

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{L}}=0.165+0.0078 \\
&=0.173(\mathrm{~N} \cdot \mathrm{~m}) \\
& \mathrm{T}_{2}=\mathrm{T}_{\mathrm{L}}=0.0078(\mathrm{~N} \cdot \mathrm{~m}) \\
& \mathrm{T}_{3}=\mathrm{T}_{\mathrm{L}}-\mathrm{T}_{\mathrm{A}}=0.0078-0.165 \\
&=-0.157(\mathrm{~N} \cdot \mathrm{~m})
\end{aligned}
$$

Effective Torque Trms is
Trms $=\sqrt{\frac{T_{1}{ }^{2} \cdot t_{1}+T_{2}{ }^{2} \cdot t_{2}+T_{3}{ }^{2} \cdot t_{3}}{t_{1}+t_{2}+t_{3}+t_{4}}}$
$=\sqrt{\frac{0.173^{2} \times 0.2+0.0078^{2} \times 1.0+0.157^{2} \times 0.2}{0.2+1.0+0.2+0.2}}$
$=0.0828(\mathrm{~N} \cdot \mathrm{~m})$

Result of Examination

Load Inertia	[Load Inertia JL $=1.63 \times 10^{-4}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$] \leq [Motor Rotor Inertia $\left.\mathrm{Jm}=1.23 \times 10^{-5}\right] \times$ [Applied Inertia $\left.=30\right]$	Conditions Satisfied
Effective Torque	[Effective Torque Trms $=0.0828(\mathrm{~N} \cdot \mathrm{~m})$] < [Servomotor Rated Torque $0.637(\mathrm{~N} \cdot \mathrm{~m}) \times 0.8$]	Conditions Satisfied
Maximum Momentary Torque	[Maximum Momentary Torque $\mathrm{T}_{1}=0.173 \mathrm{~N} \cdot \mathrm{~m}<$ [Servomotor Maximum Momentary Torque $1.91(\mathrm{~N} \cdot \mathrm{~m}) \times 0.8$]	Conditions Satisfied
Maximum Rotation Speed	[Maximum Rotations Required $\mathrm{N}=1800$ (r/min)] \leq [Servomotor Rated Rotation Speed 3000 (r/min)]	Conditions Satisfied
Encoder Resolution	The encoder resolution when the positioner multiplication factor is set to 1 is $\mathrm{R}=\frac{\mathrm{P} \cdot \mathrm{G}}{\mathrm{Ap} \cdot \mathrm{~S}}=\frac{10 \times 1}{0.01 \times 1}=1000 \text { (Pulses/Rotations) }$ The encoder specification of U Series 2048 (pulses/rotation) should be set 1000 with the Encoder Dividing Rate Setting.	Conditions Satisfied

Note.This example omits calculations for the regenerative energy, operating conditions, or positioner characteristics.

[^0]: * Note that this value changes according to the Series.

