Wonderful Chinglish!

There are 2 different braking mechanisms here.

The "DC braking" type drives a DC current in the motor windings. This is rather like driving the motor with a fixed (rather than rotating) field and it causes a drag torque on the rotor. It's not particularly good for the motor, since it results in all of the energy being dumped in the rotor or the motor. There is usually a set point for the braking current and a speed at which it starts to be applied. It can also be used to stop the motor spinning under an external torque (not a problem here). Generally for motors, the torque generated is proportional to the current. That's true for current injection too. You can increase the current to as much as 150% of the rated phase current but that's probably not ideal. There is a delay tikme before the current injection is started and the duration of the current injection seems to be a fixed duration which may continue after the motor has come to rest.

The "braking resistor" scheme simply limits the maximum voltage on the internal circuit. When you decelerate the motor rapidly, the energy is dumped back into the VFD's internal high voltage storage capacitors. If the inertial energy is sufficient and you decelerate quickly enough (so that the energy is not consumed in the VFD by internal losses), the internal voltage could rise to the point where the VFD is damaged, although the VFD will protect itself against overvoltage damage by triggering an "overvoltage fault" and disabling the output (which results in the motor simply spinning down at its own right). Without a braking resistor, you have no choice but to limit the deceleration and if you have that set too aggressively you will see that overvoltage fault. When you fit a braking resistor, the VFD can dump any excess energy into it. This allows you to decelerate at a faster rate than you could using the FD on its own.

The "braking power resistance" is the peak power rating of the braking resistor. If you have a "proper" braking resistor, it will have a specified peak power rating (in Watts) - yours appears to be 60R (01_32) and 1000W (01_33). The "braking unit used" (01_31) is the voltage threshold at which the braking resistor will start to be used - 720V seems a bit high for a 240V input VFD - for a single phase VFD I would expect that to be closer to 450Vdc. If the internal voltage never rises to this level, the braking resistor won't be doing anything. If you shorten the decel time, you should find that eventually the braking resistor will start to have a noticeable effect. Equally, if you have braking resistor turned off, you will find that shortening the decel time will result in an overvoltage fault.

A decel time of 6 seconds is pretty slow unless you have a large inertial load. I'd suggest you try shortening it down to something closer to 1 second or so. You should then find that the braking resistor actually does something. It may start to warm up slightly after a few stops from high speed - that way you can tell it's being used, if you don't have any test equipment to tell you otherwise.

Some VFDs will allow you to use both DC current injection ("DC braking" here) AND a braking resistor but they work in different ways anyhow. However, for this product, 01_07 seems to require you to choose one or the other. If you have a braking resistor you might as well make use of it.

Hope that helps a bit.