

OPI1268S

Features:

- 20kV dc Isolation
- 2 Mbit/s transfer rate
- t_{PHL}-t_{PLH} ≤ 50 ns typical
- Creepage path: 24 mm
- TTL Compatible
- 6 Axis / 10G_{RMS} load rating

Certifications:

- UL File E58730
- Vde File 40031798
- EN 60079-0:2012/A11:2013
 EN60079-11:2012 (IEC 60079-11:2011
 Edition 6)
- IP65 Rated
- ATEX Certification Exia IIc Ga

Description:

The OPI1268S is a high voltage isolator with a digital output that is capable of high speed data transmission. The input of the OPI1268 consists of a high-efficiency GaAlAs LED with a peak wavelength of 850 nm, which is optically coupled to the output optical IC. A photologic device in the output IC detects the incoming modulated light and converts it to a proportionate current. This current is fed into a high-gain linear amplifier which temperature, current and voltage compensated. The result is a highly stable digital output with an open collector inverter configuration. This device produces DC and AC voltage isolation between the input and output circuitry while providing TTL signal integrity.

Applications:

- Transportation Systems
- PC Board Power Systems
- Hybrid Vehicle Systems
- Medical Systems
- Control Systems

NOTE:

- 1. DIMENSIONS ARE \pm .010 [.25] UNLESS OTHERWISE NOTED.
- 2. DIMENSIONS ARE IN INCHES [MM].

	Ordering Information									
Part Number	LED Peak Wavelength	Sensor Photologic®	Isolation Voltage (kV)DC	t _{PLH} / t _{PHL} Max (ns)	I _F (mA) Typ / Max	V _{CE} (V) Max	Lead Length (mm)	Lead Spac- ing (mm)		
OPI1268S	850 nm	Open Collector	20	100	10 / 50	18	3.6	2.0		

Issue J 11/2017 Page 1

OPI1268S

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage Temperature	-50° C to +100° C
Operating Temperature	-50° C to +100° C
Input-to-Output Isolation Voltage ⁽²⁾	20 kVDC
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron) (3)	260° C
Input Diode	
Continuous Forward Current	30 mA
Peak Forward current (1 μs pulse width, 300 pps)	3.0 A
Reverse Voltage	3.0 V
Power Dissipation ⁽¹⁾	100 mW
Output IC	
Maximum Supply Voltage	7 V
Power Dissipation ⁽⁴⁾	40 mW
Maximum Output Voltage	18 V
Maximum Output Current	25 mA

Electrical Characteristics (T_A = 0° C to 70° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS			
Input Diode									
V _F	Forward Voltage	-	1.4	1.8	V	I _F = 20 mA			
I _R	I _R Reverse Current		0.1	100	μА	V _R = 2.0 V			
Output IC ($V_{CC} = 4.5 \text{ V}$ to 5.25 V) (See OPL550 for additional information—for reference only.)									
I _{OH}	High Level Output Current	-	0.20	25	μА	I _F = 0.0 mA, V _{OH} = 18.0 V, Vcc = 5.25 V			
V _{OL}	Low Level Output Voltage	-	0.35	0.55	V	I _F = 10.0 mA, I _{OL} = 8.0 mA, Vcc = 4.5 V			
I _{CCH}	High Level Supply Current	-	5.5	7	A	I _F = 0, Vcc = 5.25V			
I _{CCL}	Low Level Supply Current		7.5	10	mA	I _F = 10.0 mA, Vcc = 5.25 V			
Coupled Ch	Coupled Characteristics (V_{CC} = 5V, I_F =30mA, R_L =560 Ω)								
C _{IO}	Coupling Capacitance	-	-	2	pF	Input and output leads shorted.			
t _{PLH}	Propagation Delay to Low Output Level	-	50	100		See Figure 1			
t _{PHL}	Propagation Delay to High Output Level	-	50	100	ns				
I _{ISO} Isolation Leakage Current ⁽⁵⁾		-	-	20	μА	V _{ISO} = 19.2kV dc			
I _F +	I _F + LED Positive Going Threshold Current		1.7	5.0	mA	V _{CC} = 5V, I _{OL} = 8.0mA			
dv/dt	Voltage Spike Immunity		30		kV/μs				

Notes:

- (1) Derate LED linearly 1.33 mW/°C above 25°C.
- (2) UL recognition is for 16kV dc for one minute.
- (3) RMA flux is recommended. The duration can be extended to 10 seconds maximum when flow soldering.
- (4) Derate linearly 0.54m W/°C
- (5) Measured with input leads shorted together and output leads shorted together in air with a maximum relative humidity of 50%.

Issue J 11/2017 Page 2

OPI1268S

Typical Performance Curves

OPI1268S

CIRCUIT VALUES

Condition #1: $V_{CC} = 5.0V$, $I_F = 30mA$, $R_L = 560$ Ohms

Figure 1

Issue J 11/2017 Page 4