As it goes, the single string sustainer coils I've wound are about 1mH ...520mH seems like a whacking big inductance (you sure you don't mean 520uH?) , but then there's the question of what type of core, wire gauge used blah blah (things get really esoteric when it comes to old vintage components!). Have you a link to the coils in question?
Definatly 520mh

http://geofex.com/Article_Folders/wahpedl/wahped.htm

Its a few scrolls down. and easyier reading on the site....

The best explanation I could come up with is this. The inductor in the classic wah setups carries the DC bias current for the first transistor. While this is only microamps, long exposure to this unidirectional bias could result in a remanent magnetization of the inductor core if the core material was not very good in the classical, linear EE sense. It's possible that Vox merely specified the circuit, the maker (Jen, I think, in Italy) made the early wahs from as inexpensive a material as they could, and the slight deviation from linearity resulted in a sound that the folks at Vox liked. That is - it was a happy accident resulting from being cheap. I've never heard another explanation that accounts for the differences. There are differences, and measurable ones, and ones that square with reasonable explanations for how the thing works and sounds. This legend's true.
I have not seen or heard any of the supposed "next generation" Fasel style inductors, so I can't say whether they are true to the originals.
One thing that became obvious is that you could artificially get a more linear core material to have an offset, and in the easiest way. If we're always pumping current through the inductor, we can get any offset we like by just pumping more. If we were to put a second winding on a wah inductor, we could force DC through it from a current source circuit, which would force the "center" of the magnetic operation toward one or the other saturation points. Of course, this is not possible with a pre-wound and potted wah inductor, but is emminently feasible if you happen to wind your own. It's even more feasible if the inductor you use happens to have a second winding, like the Radio Shack transformer that is mentioned later. This secondary can just be hooked up and current fed through it. I intend to do this as as soon as I get some bench time. Note that I've been saying "current source". You can't just use a resistor, because transformer action would reflect this resistance into the inductance winding as a load and damp the resonant action of the inductor. The minimum you need is a transistor connected as a current source to keep from doing this.
Any help would be most appeciated.