. .

Hybrid View

Previous Post Previous Post   Next Post Next Post
  1. #1
    Quote Originally Posted by eci22 View Post
    I also made my Z plate thinner as I realised 20mm thick tool plate is out of my budget. If I have done the simulations correctly then the numbers still look promising. I will look to add the fixed plate at the back tomorrow. Thank you very much for your input
    Tip: if you can add some bits of bar to stiffen your Z-plate (i.e. turn it into a channel section) you will do better cost for cost than a flat plate. For example a 10mm plate 180mm wide with some 30 x 15 bar fixed down the edges is about 2.5x as stiff front to back as a piece of 20mm plate 180mm wide - go simulate it if you want to. I mention this because you generally end up with some space between the front and back z plates due to having to accommodate the carriages, ballscrew etc., so why not put something useful in there. The front (moving part) of the z-axis maybe isn't such an issue as the z rails will stiffen that.

    PS If you want 0.1mm accuracy, you will likely need to design for static deflection figures rather better than that - remember that cutting metal produces a lot of vibration which can mess things up.

    PPS what FEA package are you using? looks good.
    Last edited by Voicecoil; 26-04-2020 at 11:16 PM.

  2. The Following User Says Thank You to Voicecoil For This Useful Post:


  3. #2
    Quote Originally Posted by Voicecoil View Post
    Tip: if you can add some bits of bar to stiffen your Z-plate (i.e. turn it into a channel section) you will do better cost for cost than a flat plate. For example a 10mm plate 180mm wide with some 30 x 15 bar fixed down the edges is about 2.5x as stiff front to back as a piece of 20mm plate 180mm wide - go simulate it if you want to. I mention this because you generally end up with some space between the front and back z plates due to having to accommodate the carriages, ballscrew etc., so why not put something useful in there. The front (moving part) of the z-axis maybe isn't such an issue as the z rails will stiffen that.
    Do you mean like this ?
    Click image for larger version. 

Name:	z_design.png 
Views:	304 
Size:	171.7 KB 
ID:	28048

    Quote Originally Posted by Voicecoil View Post

    PS If you want 0.1mm accuracy, you will likely need to design for static deflection figures rather better than that - remember that cutting metal produces a lot of vibration which can mess things up.
    PPS what FEA package are you using? looks good.
    The FEA software is Fusion 360, it is really nice once you get used to it. What kind of ballpark figures should I be looking at for in the deflection analysis ? At the moment I'm not actually taking figures as real world numbers, but more to compare the deltas between different designs.

    Quote Originally Posted by routercnc
    Yes, vertical direction forces are mostly due to gravity but they will be much higher than 100 N as this only represents a Y and Z assembly of about 10 kg. More like 25-50 kg depending on the design, possibly more. This is to see how much the gantry will sag if you are surfacing a plate as in the extreme you would cut a dished shape. There is also a pull down force when using spiral fluted cutters, and there will be forces when drilling or plunging.
    Great I will, add the additional forces for future analysis

    Quote Originally Posted by routercnc
    The fore/aft analysis is in the wrong direction - it would be in the 'Z' direction using the coordinate system you have in the top right corner and would cause the part of the Z axis plate which is hanging down to all bend forward or rearward, and cause the gantry to twist about the 'X' axis as per your coordinates in the picture. This is usually the worst case of all the load conditions.
    So rotating around the X axis would would be the following force, correct ?
    Click image for larger version. 

Name:	D_ZY.jpg 
Views:	168 
Size:	119.6 KB 
ID:	28049

    Quote Originally Posted by Kitwin
    Bear in mind that this gantry was the first time I ever tried welding, I bought a cheap stick welder specifically for this job. To minimise the warping I clamped the pieces together and used a series of short welds alternating between the front and back seams. I use a welding technique I've called "Bird Poo" since that's what the result most resembles. Copious use of an angle grinder, gobs of car body filler and a layer of paint make it look much better than it is. The front surface was flattened (not very well) using epoxy.
    Yes I'm quite familiar with the bird poo welding technique : ). When you were welding, did you let the weld cool before removing the clamps and turn the piece around to clamp the other side or did you weld one side un-clamped, turn it over clamp it down and then weld the other side ? It you clamped down the first side then welded and turned over to weld the second side the clamps wouldn't have much effect on the first side at least ?- I'd be really interested to hear your workflow as I've alredy welded my Y axis and I am trying to improve my amount of warp in the rest of the build ( I'm using gaseless MIG, a very very basic machine), I've seen a bunch of you tube videos but haven't dialled in my sequencing yet.

    Quote Originally Posted by Boyan Silyavski
    Combine both and that's what you will have if you do not design properly the machine.

    If you design your Z properly , use proper bearings and mount your spindle correctly, variant 2 will be non existent, so variant 1 is the real deal.
    As if you clamp your spindl properly its body will strengthen the Z and only a couple of braces will make the Z equivalent to like a solid chiung of 100x100mm metal


    Here is some design wisdom to you: it does not matter what profile you use. A well designed machine will have such design as to simulate at least 10cm wide x 3cm thick steel plate against all cutting directions. Against the 3cm no the 10cm. Or the equivalent. in whatever material/s you do it.

    So go and make it 50x50mm but remember what i said if you want your machine to cut vibration free aluminum or even steel.

    Check my build at page 7 for the gantry and page 16 and 17 for the Z, to grasp the idea of how serios a gantry and a Z have to be to machine fully extended at 200mm.

    Its not only my machine i am bragging about. There at least a couple machines on forum that are seriously heavy duty and one way or another they are build like that.
    Hi Boyan, thanks for your input- do you mean your build log from project 1 in your signature ? If so I just want to point out one thing from the first page of that build log:

    Quote Originally Posted by Boyan Silyavski
    2. Money is not an issue for the frame or the length of the supported rails, so i am not going to go cheap to save 10cm of rail or steel profile.
    Unfortunately this is not the situation I am in, so I am trying to generate as much data and perform as much analysis on my design so I have enough information to make informed decisions about my build. Do you have images of your final build, it would be great to see an example of the Z axis you are describing. Thanks

  4. #3
    Quote Originally Posted by eci22 View Post
    Yes I'm quite familiar with the bird poo welding technique : ). When you were welding, did you let the weld cool before removing the clamps and turn the piece around to clamp the other side or did you weld one side un-clamped, turn it over clamp it down and then weld the other side ? It you clamped down the first side then welded and turned over to weld the second side the clamps wouldn't have much effect on the first side at least ?- I'd be really interested to hear your workflow as I've alredy welded my Y axis and I am trying to improve my amount of warp in the rest of the build ( I'm using gaseless MIG, a very very basic machine), I've seen a bunch of you tube videos but haven't dialled in my sequencing yet.
    You are overestimating my skill and ability! I used a cheap stick welder I bought online which is the only welder I have ever actually used. The pieces were clamped together with C-clamps and vice-grips and if I remember correctly I used a couple of pieces of wood as braces to keep the pieces as flat as possible. I don't have a welding table so worked on the gravel path outside my shed. I clamped everything as tightly as I could before I began and didn't undo any of the clamps until it was finished. Having spent the last couple of days properly aligning this machine for the first time I can say how pleasantly surprised I am with the result of my first attempt at welding. It's needed some shims to get everything level and parallel but has turned out very well I think. The important thing is to think about how you will make your design adjustable, where you will need to have joints that can take shims for alignment and how you will access those joints when the machine is complete without taking half of it to bits again.
    An optimist says the glass is half full, a pessimist says the glass is half empty, an engineer says you're using the wrong sized glass.

  5. #4
    Quote Originally Posted by Kitwn View Post
    You are overestimating my skill and ability! I used a cheap stick welder I bought online which is the only welder I have ever actually used. The pieces were clamped together with C-clamps and vice-grips and if I remember correctly I used a couple of pieces of wood as braces to keep the pieces as flat as possible. I don't have a welding table so worked on the gravel path outside my shed. I clamped everything as tightly as I could before I began and didn't undo any of the clamps until it was finished. Having spent the last couple of days properly aligning this machine for the first time I can say how pleasantly surprised I am with the result of my first attempt at welding. It's needed some shims to get everything level and parallel but has turned out very well I think. The important thing is to think about how you will make your design adjustable, where you will need to have joints that can take shims for alignment and how you will access those joints when the machine is complete without taking half of it to bits again.
    Thanks for the advice, yes I think the joints and adjustability becomes really important- so many choices!

    Quote Originally Posted by Voicecoil
    Not really, I'm pretty sure it would be best to have the Hiwin rails fix directly onto the plate (which will add some rigidity already, especially with the extra stiffness of steel, so would be worth adding into you simulation) I was meaning maybe either side of the ballscrew (assuming there's enough clearance) or even on the front either side of the spindle mount if there's space. Just trying to help you add some cheap rigidity :-)
    Like this ?

    Click image for larger version. 

Name:	z_design2.jpg 
Views:	155 
Size:	69.4 KB 
ID:	28052

    That does seem like a great idea to add rigidity

    I think I've read a few times that it's better to have the guide blocks fixed and the linear rails moving down on the Z axis- I've also seen this quite a few times on builds, apologies if this is not what you mean by saying ('best to have the Hiwin rails fix directly onto the plate')

  6. #5
    Quote Originally Posted by eci22 View Post
    Thanks for the advice, yes I think the joints and adjustability becomes really important- so many choices!
    You then have to choose what measurements you need to make and instruments to buy in order to set those adjustments correctly. There are a lot of worms in the can but you learn a lot too.
    An optimist says the glass is half full, a pessimist says the glass is half empty, an engineer says you're using the wrong sized glass.

  7. The Following User Says Thank You to Kitwn For This Useful Post:


  8. #6
    Quote Originally Posted by eci22 View Post
    Do you mean like this ?
    Click image for larger version. 

Name:	z_design.png 
Views:	304 
Size:	171.7 KB 
ID:	28048
    Not really, I'm pretty sure it would be best to have the Hiwin rails fix directly onto the plate (which will add some rigidity already, especially with the extra stiffness of steel, so would be worth adding into you simulation) I was meaning maybe either side of the ballscrew (assuming there's enough clearance) or even on the front either side of the spindle mount if there's space. Just trying to help you add some cheap rigidity :-)
    The FEA software is Fusion 360, it is really nice once you get used to it. What kind of ballpark figures should I be looking at for in the deflection analysis ? At the moment I'm not actually taking figures as real world numbers, but more to compare the deltas between different designs.
    I'm no expert on dynamic loads whilst cutting, but as it's not exactly a smooth process (hence the noise!) I would expect peak loads to be may 1.5...2x the static???

Thread Information

Users Browsing this Thread

There are currently 2 users browsing this thread. (0 members and 2 guests)

Similar Threads

  1. Need advice on gantry design
    By jcarpenter in forum Gantry/Router Machines & Building
    Replies: 33
    Last Post: 13-05-2018, 01:51 PM
  2. Design for 4' * 3' gantry cnc - help me decide
    By colin2216 in forum Gantry/Router Machines & Building
    Replies: 1
    Last Post: 17-04-2017, 07:21 PM
  3. Design a Steel Machine - Stress-Analysis - Load?
    By kim in forum Gantry/Router Machines & Building
    Replies: 1
    Last Post: 10-05-2016, 10:15 PM
  4. Gantry design advice please
    By D-man in forum Gantry/Router Machines & Building
    Replies: 10
    Last Post: 07-11-2012, 04:17 PM
  5. Gantry design question
    By D.C. in forum Gantry/Router Machines & Building
    Replies: 30
    Last Post: 10-10-2012, 09:11 AM

Tags for this Thread

Bookmarks

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •